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Problem Overview

• A task that humans can perform naturally

• Goal	



- Develop computational models for discovering linguistic structures from speech

/l uh k ae t dh ae t d ao g iy/

/hh aw aa r  y uw/

look at that doggie

how are you



/b/a
/ax/
/n/a
/ae/
/n/a
/ax/
/s/a

• Take acoustic model as an example	



!
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Potential Applications of Discovered Structures

• Unsupervised training of speech recognizers



• Take acoustic model as an example	



- Training requires word transcriptions with a pronunciation lexicon	



Acoustic 
Model

difficult to obtainbanana

  banana: /b ax n ae n ax/
a

Lexicon

Potential Applications of Discovered Structures

• Unsupervised training of speech recognizers
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• Unsupervised phonetic unit discovery	



- Allows learning an acoustic model directly from speech data	
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• Take acoustic model as an example	



- Training requires word transcriptions with a pronunciation lexicon	



• Unsupervised training of speech recognizers

• Unsupervised phonetic unit discovery	



- Allows learning an acoustic model directly from speech data	



Acoustic 
Model

3 18 29 56 47



Applications of Higher Level Linguistic Structures

• Representing Out-of-vocabulary words using sub-word units

• Sub-word units are useful for representing out-of-vocabulary words



• Unsupervised word discovery	



- Natural language processing on spoken documents without speech recognition	



• Sub-word units are useful for representing out-of-vocabulary words

Summarizer

• Connection to the field of Cognitive Science

Applications of Higher Level Linguistic Structures



Outline

Discovering phonetic inventory
[Lee and Glass,  ACL 2012]

/b/ /ax/ /n/ /ae/ /n/ /ax/ Part I of the talk

Discovering hierarchical 
linguistic structures
[Lee, O’Donnell, and Glass, TACL 2015]

Part II of the talkbanana
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Part I: Discovering Phonetic Units from Speech

Part I of the talk

Discovering hierarchical 
linguistic structures
[Lee, O’Donnell, and Glass,TACL 2015

banana

/b/ /ax/ /n/ /ae/ /n/ /ax/

Part II of the talk
Syllable

Word

Phone

/b/ /ax/ /n/ /ae/ /n/ /ax/

Discovering phonetic inventory
[Lee and Glass,  ACL 2012]



Problem Overview

• Find the phone units embedded in the observed speech data



Problem Overview

• Latent variables

• Find the phone units embedded in the observed speech data

/b/, /k/, /d/, 
/ae/, 

/ix/, /iy/, /e/, /

- Phone inventory

- Phone boundaries

/b/ /ax/ /n/ /ae/ /n/ /ax/

- Phone labels



Related Work

• Unsupervised acoustic unit discovery and modeling	



- Towards unsupervised training of speaker independent acoustic models     
[Jansen and Church, INTERSPEECH 2011]	



- Unsupervised hidden Markov modeling of spoken queries for spoken term 
detection without speech recognition [Chan et al., INTERSPEECH 2011]	



- Keyword spotting of arbitrary words using minimal speech resources        
[Garcia and Gish, ICASSP 2006]	



- Toward ALISP: A proposal for automatic language independent speech 
processing [Chollet et al., Computational Models of Speech Pattern Processing 
1999]	



- A segment model based approach to speech recognition                            
[Lee et al., ICASSP1988]
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Generative Story

HMM1 HMM2 HMMi HMMi+1
... ...

• A simple explanation of how a spoken utterance is generated

• Main latent variables	



- Phone boundaries (b)	



- cluster labels (c)	



- HMM parameters (θ)
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HMM1 HMM2 HMMi HMMi+1
... ...

• A simple explanation of how a spoken utterance is generated

• Main latent variables	



- Phone boundaries (b)	



- Phone labels (c)	



- HMM parameters (θ)

b9 b16 b28 b37b1 ... ... ... ...

i+1 1 i 2 i 1

...

c1 c2 c3 c4 c5 c6
/b/ /ax/ /n/ /ae/ /n/ /ax/
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Generative Story

HMM1 HMM2 HMMi HMMi+1
... ...

• A simple explanation of how a spoken utterance is generated

• Main latent variables	



- Phone boundaries (b)	



- Phone labels (c)	



- HMM parameters (θ)	



- # of HMMs

b9 b16 b28 b37b1 ... ... ... ...

i+1 1 i 2 i 1

...

c1 c2 c3 c4 c5 c6
/b/ /ax/ /n/ /ae/ /n/ /ax/
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Generative Story

HMM1 HMM2 HMMi HMMi+1
... ...

• A simple explanation of how a spoken utterance is generated

• Main latent variables	



- Phone boundaries (b)	



- Phone labels (c)	



- HMM parameters (θ)	



- # of HMMs (phones)
c1 c2 c3 c4 c5

b9 b16 b28 b37b1 ... ... ... ...

i+1 1 i

/b/ /ax/ /n/ /ae/

2 i

/n/

1

/ax/
c6

...

Dirichlet Process
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Inference Procedure

• Iterate n times	



- n = 20,000 in our experiments

Initialize boundary variables (bt) randomly

Sample ci for each segment

Sample HMM parameters (θi)

Sample for each bt 

Gibbs sampling



DP as a Prior for Phone Labels (c)

• A Chinese Restaurant Process (CRP) representation	



- Each table is a phonetic unit	



- Each speech segment is a customer si = [xt, xt+1,...xt+Li ]



c1 = 1

θ1

S1

DP as a Prior for Phone Labels (c)
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θ1

S1

θ2

S2
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c1 = 1 c2 = 2
c3 = 1

θ1

S1

θ2

S2S3

si = [xt, xt+1,...xt+Li ]

DP as a Prior for Phone Labels (c)

• A Chinese Restaurant Process (CRP) representation	



- Each table is a phonetic unit	



- Each speech segment is a customer



c1 = 1 c2 = 2
c3 = 1

c4 = 3
c5 = 3c8 = 2

c9 = 1

ct = K

θ1 ...
S1

θ2 θ3 θK

S2S3 S4S5 StS8

S9

si = [xt, xt+1,...xt+Li ]

DP as a Prior for Phone Labels (c)

• A Chinese Restaurant Process (CRP) representation	



- Each table is a phonetic unit	



- Each speech segment is a customer



• For a new segment (si), the posterior probability distribution of ci :
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• For a new segment (si), the posterior probability distribution of ci :

- si sits at an occupied table

Si

θ1 ...
S1

θ2 θ3 θK

S2S3 S4S5 StS8

S9

si is not a new phone 

posterior probability DP prior likelihood

Posterior Distribution for ci

  

€ 

p(ci = k,1≤ k ≤ K |)∝
nk

N −1+α
p(si |θk )

€ 

n
k : number of customers at table k

€ 

N : number of costumers seen so far

€ 

α : concentration parameter of DP

not N-1 but N

N + ↵
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• For a new segment (si), the posterior probability distribution of ci :

Si

- si sits at an occupied table

- si opens a new table 

θ1 ...
S1

θ2 θ3 θK

S2S3 S4S5 StS8

S9 θK+1

si is not a new phone 

si is a new phone 

  

€ 

p(ci = K +1 |)∝
α

N −1+α
p(si |θ)dθθ

∫

Posterior Distribution for ci

  

€ 

p(ci = k,1≤ k ≤ K |)∝
nk

N −1+α
p(si |θk )N + ↵

N + ↵



• For a new segment (si), the posterior probability distribution of ci :

Si

- si sits at an occupied table

- si opens a new table 

θ1 ...
S1

θ2 θ3 θK

S2S3 S4S5 StS8

S9 θK+1

si is not a new phone 

si is a new phone Generate a sample for ci

Posterior Distribution for ci

  

€ 

p(ci = K +1 |)∝
α

N −1+α
p(si |θ)dθθ

∫

  

€ 

p(ci = k,1≤ k ≤ K |)∝
nk

N −1+α
p(si |θk )N + ↵

N + ↵
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Experiments

• Data set	



- TIMIT corpus	



- Multi-speaker, clean read speech, 16kHz sampling rate

• Quantitative assessments 	



- Phone segmentation	



- (Query-by-example spoken term detection)

• Qualitative assessment 	



- Correlation between induced phone units and English phones	



- Results learned from 3696 utterances



• 123 phone units discovered from 3696 TIMIT utterances	



- A fine correlation between discovered phones and English phones	
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Discovered Phone Units -- 3696 utterances



• 123 phone units discovered from 3696 TIMIT utterances	



- A fine correlation between discovered phones and English phones	



Discovered Phone Units -- 3696 utterances

Context-dependent:	


  /ae/ + /m/, /n/	



/ae/ + stops 



Phone Segmentation

• TIMIT training portion

Recall Precision F-score

 Dusan et al. (unsupervised) 75.2 66.8 70.8

 Qiao et al. (semi-supervised) 77.5 76.3 76.9

 Our model (unsupervised) 76.2 76.4 76.3



Part I: Discovering Phonetic Units from Speech

Discovering hierarchical 
linguistic structures
[Lee, O’donnell, and Glass,TACL 2015
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• DP mixture models with HMMs	



- Discovered phonetic units are highly 
correlated with standard phones

- Achieves phone segmentation 
performance similar to the semi-
supervised baseline



Discovering phonetic inventory

Discovering hierarchical 
linguistic structures

[Lee and Glass, ACL 2012]

/b/ /ax/ /n/ /ae/ /n/ /ax/

[Lee, O’Donnell, and Glass, TACL 2015]

banana
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Part II: Discovering Hierarchical Linguistic Structures

• DP mixture models with HMMs	



- Discovered phonetic units are highly 
correlated with standard phones

- Achieves phone segmentation 
performance similar to the semi-
supervised baseline



Problem Overview

ae n eh m ay t iy ow p ax n y n erax s ax dx ae nzd duw v iyPhones:

[ae n d] [eh m] [ay] [t iy z] [ow p] [ax n] [y uw] [n ax] er][v [s ax] [dx iy] [ae n d]Syllables:

anduniversityMIT’sand openWords:

Input:

• Discover hierarchical linguistic structures from speech

- Phone-like, syllable-like and word-like units



Related Work

• Spoken term discovery	



- Unsupervised patter discovery in speech [Park and Glass, IEEE Trans., 2008] 	



- Unsupervised speech processing with applications to query-by-example spoken term detection 
[Zhang, Ph.D. Thesis 2013] 	



- Towards spoken term discovery at scale with zero resources [Jansen et al., INTERSPEECH 2010]

• Word segmentation on phone transcripts of spoken utterances	



- A Bayesian framework for word segmentation: Exploring the effects of context 
[Goldwater et al., Cognition 2009]	



- Bayesian unsupervised word segmentation with nested Pitman-Yor language 
modeling [Mochihashi et al., ACL 2009]	



- Using adaptor grammars to identify synergies in the unsupervised acquisition of 
linguistic structure [Johnson, ACL-HLT 2008]



Spoken Term Discovery

[Park and Glass, IEEE Trans., 2008] [Zhang, Ph.D. Thesis 2013] [Jansen et al., INTERSPEECH 2010]

Input:

• Discover speech segments that correspond to words	



- Can only find isolated speech segments

• No internal structures are learned	





Spoken Term Discovery

university

[Park and Glass, IEEE Trans., 2008] [Zhang, Ph.D. Thesis 2013] [Jansen et al., INTERSPEECH 2010]

Input:

• Discover speech segments that correspond to words	



- Can only find isolated speech segments

• No internal structures are learned	





Word Segmentation on Phone Transcripts

[Goldwater et al., Cognition 2009]
ae n eh m ay t iy ow p ax n y n erax s ax dx ae nzd duw v iyInput:

[Goldwater et al., ACL 2006] [Brent and Cartwrite, Cognition 1996] [Mochihashi et al., ACL 2009]

• Model words as sequences of phones	



!
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Word Segmentation on Phone Transcripts

• Model words as sequences of phones	



!• Modeling more levels of structures improves word segmentation	



- Word → Syllables          Syllable → Phones

[Johnson, ACL-HLT 2008] [Johnson et al., NAACL-HLT, 2009]
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Word Segmentation on Phone Transcripts

[Goldwater et al., Cognition 2009]
ae n eh m ay t iy ow p ax n y n erax s ax dx ae nzd duw v iyInput:

• Model words as sequences of phones	



!• Modeling more levels of structures improves word segmentation	



- Word → Syllables          Syllable → Phones

[ae n d] [eh m] [ay] [t iy z] [ow p] [ax n] [y uw] [n ax] er][v [s ax] [dx iy] [ae n d]Syllables:

anduniversityMIT’sand open

only learns from symbolic input

Words:

• Adaptor grammars is an effective tool for learning rich structures

[Johnson, ACL-HLT 2008] [Johnson et al., NAACL-HLT, 2009]
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• Integrate adaptor grammars and the phone discovery model	



- To discover rich linguistic structures from speech

• Three components in the model
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Noisy-channel model
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Model Overview

• Integrate adaptor grammars and the phone discovery model	



- To discover rich linguistic structures from speech

• Three components in the model

Noisy-channel model

Adaptor grammars

Phone discovery model

A nonparametric Bayesian extension of 
probabilistic context-free grammars 

(PCFGs)



PCFG Example

An example PCFG for 	


generating phone sequences

Word Syl

Word Syl
Syl Phn
Phn
Phn /n/
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Word Word
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...

PCFG

/ax/

Phn /ow/0.1
Phn /p/0.1



PCFG Generative Process
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Adaptor Grammars

Syl

Phn

• A PCFG + cached rules for adapted nonterminals (underlined)	



- Associate a Dirichlet process with each adapted nonterminal
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• A PCFG + cached subtrees for adapted nonterminals	
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Adaptor Grammars 

• A PCFG + cached subtrees for adapted nonterminals	



- Associate a Dirichlet process with each adapted nonterminal	



Syl: Cached 
subtrees

Key idea: 	


Adaptor grammars memorize 

reusable structures Word Syl

Word Syl
Syl Phn
Phn
Phn /n/

0.7
0.3
1.0
0.1
0.05

Syl

Phn

Sen0.5
Sen0.5
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...

PCFG

/ax/

Phn /ow/0.1
Phn /p/0.1

Word



Syl: 

/ow/ /p/ /ax/ /n/

Word

Syl Syl

Phn Phn Phn Phn

• Assume a current parse

Sen

Cached 
subtrees

Adaptor Grammars Generative Process
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• Cache subtrees for adapted nonterminals

Sen
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Adaptor Grammars Generative Process
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• The phone inventory is unknown
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Recall

• A standard phone may map to multiple discovered units

• These variations must be collapsed for lexicon learning

Collapse the variations by 
using a noisy-channel model

49 58
/k/ /ae/ /k/ /ae/

49 26
/t/
32

/t/
32

• Various phone sequences for a word type



Model Overview

Noisy-channel model

Adaptor grammars

Phone discovery model

• Integrate adaptor grammars and the phone discovery model	



- To discover rich linguistic structures from speech

• Three components in the model

Regularize the phonetic variations



Noisy-channel Model

• Assume the phonetic variations are outcomes of a noisy-channel
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Noisy-channel Model

• Formulate the noisy-channel model as a set of edit operations	
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Noisy-channel Model

• Formulate the noisy-channel model as a set of edit operations	



- Substitution, deletion, insertion, and exact-match
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Experimental Setup

• MIT Lecture Corpus	



- The six lectures evaluated in [Park and Glass, IEEE Trans. 2008]	



- Each lecture contains ~1 hour of speech data by a single speaker	



- Each lecture contains a set of subject-specific keywords

• Qualitative assessment	



- Sentence and word parses	



- Analysis on the discovered hierarchical linguistic structures

• Quantitative assessment	



- Coverage of subject-specific keywords	



- (Word and phone segmentation)



Parse of a Full Sentence
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Parse of a Full Sentence

37 12 67 158 1 2 19 20 41 47 13 103 48 91 4 67 25 8 99 29 44 22 103 4 37 12 6788
_ ae n eh m ay tcl t iy z ow p ax n y uw n erax v s ax iy _ ae ndcl d dx

Syl Syl Syl Syl Syl Syl Syl Syl Syl Syl Syl Syl SylSyl

Word Word Word WordWord

and MIT’s open university and

MIT’s only occurs 3 times in the lecture

open and university almost always appear together in the lecture  



Word Parses

• Two instances of  “collaboration”	



- Noisy-channel model normalizes the bottom-layer phone transcripts	



- Syllable structures are not standard but highly reusable
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41 7 30
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v

• Two instances of  “collaboration”	



- Noisy-channel model normalizes the bottom-layer phone transcripts	



- Syllable structures are not standard but highly reusable
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Word Parses

91 106 28 16 18 29 43 6 7 30 50 106 28 16 18 29 43 41 7 30

50 137 28 16 18 31 43 6 7 30 50 137 28 16 18 31 43 6 7 30

• Two instances of  “collaboration”	



- Noisy-channel model regularizes the bottom-layer phone units	



- Highly reusable sub-word structures

u

v

[50 137] [28 16] [18 31 43] [6 7 30] 
collaboration

k el ae bcl ax r ey sh enkcl



Structure Reuse

[50 137] [28 16] [18 31 43] [6 7 30] 

collaboration

• Examples of reusing [6 7 30]

k el ae bcl ax r ey sh enkcl

bcl ax l ax z ey sh engcl  g l ow
[106 48] [18 31] [147 13] [6 7 30] 

globalization

reservation
[1 158] [70 23] [34 99] [6 7 30]

eh z ey sh enr er  v

innovation
[67] [1 27] [99]

n vih ax
[6 7 30]

ey sh en

foundation
[22 46 8]

awf n 
[6 7 30]

ey sh en dcl d



Subject-specific Keywords

• Term Frequency Inverse Document Frequency (TFIDF) scores	



- The top 20 words for each lecture [Park and Glass, IEEE Trans. 2008]

• Keyword examples	



- From the seminar about the book “The world is flat” by Thomas Friedman

flat
globalization
collaboration

India
era

1.
2.
3.
4.
5.

flattener
dollar
China

southwest
argue

6.
7.
8.
9.
10.

11.
12.
13.
14.
15.

airline
thousand

outsourcing
really

platform

16.
17.
18.
19.
20.

huge
create

convergence
connect
chapter
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Future Work

• Learning from more sensory data	



- Speech and visual streams

The doggie is sleeping



Future Work

• Building spoken language systems based on discovered vocabulary	



- For low-resource languages or languages without a writing system	





Thank you.
(kite.com)

http://kite.com


• 43 phone units discovered from 300 TIMIT utterances	



- Phone units are correlated with English broad phone classes	



Discovered Phone Units -- 300 utterances

Labial and dental sounds 
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Dirichlet Process (DP)

• Let’s start with Dirichlet distribution	



- Dirichlet distribution is a distribution over the K-dim probability simplex	
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Dirichlet Process (DP)

• Let’s start with Dirichlet distribution	



- Dirichlet distribution is a distribution over the K-dim probability simplex	



- Assume we have 3 HMMs in the mixture

θ1

θ2 θ3

high probability0.33

θ1 θ2 θ3

low probability0.01

0.98

0.01

θ1 θ2 θ3



Inference for HMM Parameters (θ)

• HMM is used to model each phone	



- Three states with only left-to-right and self transitions	



- Always start from the first state	



- A diagonal GMM is used for the emission distributions
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Inference for HMM Parameters (θ)

• Latent variables	



- Transition probabilities (  )	



- Mixture weights (w)	



- Means (μ)	



- Variances (σ  )2

€ 

a

1 2 3

€ 

w
1,i
N u

1,i
,σ

1,i

2( )
i=1

8

∑

€ 

w
2,i
N u

2,i
,σ

2,i

2( )
i=1

8

∑

€ 

w
3,i
N u

3,i
,σ

3,i

2( )
i=1

8

∑

€ 

a
1,1

€ 

a
1,2 € 

a
1,3

€ 

a
2,2

€ 

a
2,3

€ 

a
3,3

€ 

a
3,E E

€ 

a
1,E

• HMM is used to model each phone	



- Three states with only left-to-right and self transitions	



- Always start from the first state	



- A diagonal GMM is used for the emission distributions



Priors and Posteriors for HMM

• Priors	



- Dirichlet distributions for transition probabilities (  ) and mixture weights (w)	



- Normal-gamma distributions for Gaussian parameters (μ, σ  )
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- Gather relevant counts from customer segments	



- Update prior distributions	



- Sample new values for the latent variables
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Dirichlet Process (DP)

• Conceptually	



- Dirichlet process can be viewed as an infinite case of Dirichlet distribution

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

...
...

β

• Unknown # of HMMs	



- Assume there are infinite number of HMMs first	



- Infer the finite number of HMM are needed to explain the finite data	



- By integrating     during inference, DP provides a nice math format to find the #β

countably countable



• A PCFG is a quintuple (N, T, S, R,              )

PCFG Review

π q{ }q∈N
• N : a finite set of nonterminal symbols 

• T : a finite set of terminal symbols	



- N ∩ T = ∅

• S : start symbol	



- S ∈ N

• R : production rules	



- R ={N → (N ∪ T)*}

•     : rule probabilities	



- q ∈ N

π q

Word Syl

Word Syl

Syl Phn

Syl Phn

Phn

Phn /n/

0.7

0.3

0.6

0.4

0.1

0.05

Syl

Phn

Sen0.5
Sen0.5

Word Word
Word

...

PCFG

/ax/



Acoustic Landmarks

!

• Advantage	



- Reduce inference load	



• Naively, every frame can be a phone boundary	



- In fact, some frames are more likely to be boundaries and some are less likely	



- Compute landmarks [Glass et al. 2003] and only do inference on landmarks	



- A language-independent method

• Disadvantage	



- Put an upper bound on recall rate	





Spoken Term Detection

• Given a spoken query (w), find all spoken documents that contain w	



- 3696 utterances for discovering phone units	



- Compute posterior-grams on the HMM states of the discovered phone units	



- Apply dynamic time warping for detection [Zhang et al, 2009]
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Spoken Term Detection

• Given a spoken query (w), find all spoken documents that contain w	



- 3696 utterances for discovering phone units	



- Compute posterior-grams on the HMM states of the discovered phone units	



- Apply dynamic time warping for detection [Zhang et al, 2009]
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Spoken Term Detection

• Given a spoken query (w), find all spoken documents that contain w	



- 3696 utterances for discovering phone units	



- Compute posterior-grams on the HMM states of the discovered phone units	



- Apply dynamic time warping to keyword detection [Zhang et al, 2009]	
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 Our model 63 16.9
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P@N: the average precision of top N hits 
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Spoken Term Detection

• Given a spoken query (w), find all spoken documents that contain w	



- 3696 utterances for discovering phone units	



- Compute posterior-grams on the HMM states of the discovered phone units	



- Apply dynamic time warping to keyword detection [Zhang et al, 2009]	



- 10 selected keywords
P@N: the average precision of top N hits 

P@N EER

 English Monophone (Supervised) 74 11.8

 Thai Monophone Model (Supervised) 56.6 14.9

 Our model 63 16.9

 Zhang 2009 (GMM) (Unsupervised) 52.5 16.4

 Zhang 2012 (DBM) (Unsupervised) 51.1 14.7



• An unknown set of phone units	



- Impose a Dirichlet Process prior to guide inference on the number of HMMs

Unknown Number of HMMs
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- Impose a Dirichlet Process prior to infer the number of phones
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Unknown Number of HMMs

• Is Dirichlet process (DP) a proper prior for this task?	



- Does phone frequency inherit power law?	



- DP should be a reasonable prior to start with

• An unknown set of phone units	



- Impose a Dirichlet Process prior to infer the number of phones



Phone Frequency -- Monophone



Phone Frequency -- Triphone

fit the actual line
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Unknown Number of HMMs

• Is Dirichlet process (DP) a proper prior for this task?	



- Does phone frequency inherit power law?	



- DP should be a reasonable prior to start with

• An unknown set of phone units	



- Impose a Dirichlet Process prior to infer the number of phones



θ1 θ2 θi θi+1

Generative Story

HMM1 HMM2 HMMi HMMi+1
... ...

• A simple explanation of how a spoken utterance is generated

• Main latent variables	



- Phone boundaries (b)	



- Phone labels (c)	



- HMM parameters (θ)	



- # of HMMs (phones)
c1 c2 c3 c4 c5

b9 b16 b28 b37b1 ... ... ... ...

i+1 1 i

/b/ /ax/ /n/ /ae/

2 i

/n/

1

/ax/
c6

...

Dirichlet Process



Language Acquisition Modeling

• Previous work relies on highly pre-processed input data

Word 
Segmentation	



Model

look
at
that
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Language Acquisition Modeling

Word 
Segmentation	



Model

(l uh k)
(ae t)
(dh ae t)
(d ao g iy)

l uh k ae t dh ae t d ao g iy

Other tasks such as phonetic unit learning are ignored 

• Ground language acquisition modeling in real sensory data

• Previous work relies on highly pre-processed input data

• Ultimately allow machines to acquire a language like humans

look
at
that
doggie



Discovering Structures Beyond Phones

• Spoken document summarization

Speech 
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automatic 
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• Useful for representing out-of-vocabulary words



Discovering Structures Beyond Phones

mismatch problems error propagation

• Useful for representing out-of-vocabulary words

• Spoken document summarization
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Discovering Structures Beyond Phones

• Unsupervised word discovery	



- Automatic spoken document summarization without speech recognition

latent word structures

• Sub-word units are useful for representing out-of-vocabulary words



Discovering Structures Beyond Phones

• Unsupervised word discovery	



- Automatic spoken document summarization without speech recognition

Summarizer

• Connection to Cognitive Science (CogSci)	



- Computational models for learning from speech are of great interests in CogSci

• Sub-word units are useful for representing out-of-vocabulary words



Model Overview

• Integrate adaptor grammars and the phone discovery model	



- To discover rich linguistic structures from speech

• Three components in the model

Adaptor grammars Discover hierarchical linguistic structures 
(Words, Syllables etc)

Noisy-channel model

Phonetic discovery model



Model Overview

• Integrate adaptor grammars and the phone discovery model	



- To discover rich linguistic structures from speech

• Three components in the model

Noisy-channel model

Phonetic discovery model Discover the phonetic units from acoustic data

Adaptor grammars



Model Overview

• Integrate adaptor grammars and the phone discovery model	



- To discover rich linguistic structures from speech

• Three components in the model

Noisy-channel model

Phonetic discovery model

Adaptor grammars

Bridges the other two components
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Adaptor grammars
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Initialization

• Initialize        and         using the phonetic discovery modelbv
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• Boundary variables	



- A priori, every frame can be a phone boundary	



- Boundary variables take binary values	



b1 ... ...b2 b3 b9 b10

Inference on Phone Boundaries (b)



• Boundary variables	



- A priori, every frame can be a phone boundary	



- Boundary variables take binary values	



0 0 0 1 0
b1 ...b2 b3 b9 b10...

Inference on Phone Boundaries (b)



Prior and Posterior for Phone Boundaries

• Prior	



- Fixed prior probabilities                     and  p bt =1( ) =αb p bt = 0( ) =1−αb



bt 
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• Posterior: examine one boundary variable (bt) at a time	



- Fix the current values of other boundary variables	



- Consider both 0 and 1 for bt and the respective segmentation outcomes

• Prior	
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• Posterior: examine one boundary variable (bt) at a time	
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- Fixed prior probabilities                     and  p bt =1( ) =αb p bt = 0( ) =1−αb
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Prior and Posterior for Phone Boundaries

• Posterior: examine one boundary variable (bt) at a time	
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Generate a sample for bt

Prior and Posterior for Phone Boundaries

• Posterior: examine one boundary variable (bt) at a time	



- Fix the current values of other boundary variables	



- Consider both 0 and 1 for bt and the respective segmentation outcomes

• Prior	



- Fixed prior probabilities                     and  p bt =1( ) =αb p bt = 0( ) =1−αb
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Noisy-channel Model

• Formulate the noisy-channel model as a set of edit operations	



- Substitution, deletion, insertion, and exact-match
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32
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32

Noisy-channel

• Assume the phonetic variations are outcomes of a noisy-channel

49 → 49exact-match
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Noisy-channel Model

• Formulate the noisy-channel model as a set of edit operations	



- Substitution, deletion, insertion, and exact-match

/ae/
49 32

/t/
58

/k/

49 58
/k/ /ae/ /k/ /ae/

49 26
/t/
32

/t/
32

Noisy-channel

• Assume the phonetic variations are outcomes of a noisy-channel

32 → 32

49 → 49exact-match
58 → 26substitution

exact-match
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