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® Manually transcribed data are required

- Phone transcriptions

- Word transcriptions
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® Can we train an acoustic model with just speech input?

4 )

A 1]
T ot

- J




Towards Unsupervised [raining

® Can we train an acoustic model with just speech input?

4 )

A 1]
T ot

- J




Towards Unsupervised [raining

® Can we train an acoustic model with just speech input?

4 )

A 1]
g —{ 2 o Acot

- J




Related Work

® |nspiration

- A Bayesian framework for word segmentation: Exploring the effects of context
|Goldwater et al,, Cognition 2009]




Related Work

® |nspiration

- A Bayesian framework for word segmentation: Exploring the effects of context
'Goldwater et al., Cognition 2009]

® Unsupervised acoustic modeling

- Towards unsupervised training of speaker iIndependent acoustic models [Jansen
and Church, INTERSPEECH 201 1]

- Unsupervised learning of acoustic sub-word units [Varadarajan et al, ACL 2008]

- Keyword spotting of arbitrary words using minimal speech resources [Garcia
and Gish, ICASSP 2006]

- A segment model based approach to speech recognition [Lee et al,
ICASSP [ 988]
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® A simple explanation of how a spoken utterance is generated

® Assumptions

- HMM-based mixture model

- Speech segments are 1.1.d
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Unknown Number of HMMs

® An unknown set of phone units

- Impose a Dirichlet Process prior to guide inference on the number of HMMs

® |s Dirichlet process (DP) a proper prior for this task?
- Does phone frequency inherit power law?

- DP should be a reasonable prior to start with
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X: concentration parameter of DP

Go: base distribution of DP
B~GEM(q)

X prior for bx

X: observations

i length of the I-th segment

N: total number of segments

T:total number of frames

—> deterministic relation
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X: observations

i length of the I-th segment

N: total number of segments

T:total number of frames

—> deterministic relation

latent variables that
will be inferred
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® A Chinese restaurant process representation
- Each table 1s a phonetic unit

- Fach speech segment is a customer si = [Xt, Xt+1,. X+ |
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® For a new segment (si), the posterior probability distribution of ¢ :

- si sits at an occupied table —> siIs not a new phone

n
plc,=kl<sk=Kl--)x N 1k p(s; 10,) n,: number of customers at table k
-1+«

Y

N : number of costumers seen so far

a trati ter of DP
posterior probabi”ty DP prior likelinood concentration parameter O
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Posterior Distribution for ¢

® For a new segment (si), the posterior probability distribution of ¢ :

- si sits at an occupied table —> siIs not a new phone

c.=kl<k<Kl| ) it s 10 —
p(c, ) N 1+ocp(l e)

- siopens a new table — si is a new phone — Generate a sample for ¢

c,=K+1l--) o 5. 10)do ——
p(c, ) N 1fop( )
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( Initialize boundary variables (bx) randomly)

l
——’( Sample ci for each segment )

\ 4

( Sample HMM parameters (6i) )

Gibbs sampling

Y

( Sample for each b )

® |terate n times

- n = 20,000 in our experiments
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® HMM is used to model each phone
- Three states with only left-to-right and self transitions
- Always start from the first state

- A 8-mixture diagonal GMM Is used for the emission distributions

® |atent variables

- Transition probabillities ()
- Mixture weights (w)
- Mean (M)

- Variance (0?)
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Priors and Posteriors for HMM

® Priors

- Dirichlet distributions for transition probabilities (@) and mixture weights (w)

- Normal-gamma distributions for Gaussian parameters (M4, G°)

® Posteriors

- Gather relevant counts from customer segments S
3

- Update prior distributions

- Sample new values for the latent variables




Inference Procedure

( Initialize boundary variables (bx) randomly)

l
——’( Sample ci for each segment )

\ 4

( Sample HMM parameters (6i) )

Gibbs sampling

Y

( Sample for each b )

® |terate n times

- n = 20,000 in our experiments
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® Boundary variables
- Nalvely, every frame can be a phone boundary

- Boundary variables take binary values
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® Prior
- Fixed prior probabillities p(bt =1)=ab and p(b,=0)=1-gq,
® Posterior: examine one boundary variable (b:) at a time

- Fix the current values of other boundary variables

- Consider both O and | for brand the respective segmentation outcomes

bi=1

p(b =11 )

I\HH\IIlIHIIhH|||HH| p(b, =1)p(s,. 1¢7.0)p(s,., 1¢.0)

St-1 St+1

¢ . cluster labels of all other segments
0 : the set of HMMs
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® Prior

- Fixed prior probabillities p(bt =1)=ab and p(b,=0)=1-gq,

® Posterior: examine one boundary variable (b:) at a time
- Fix the current values of other boundary variables

- Consider both O and | for brand the respective segmentation outcomes
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Prior and Posterior for Phone Boundaries

® Prior

- Fixed prior probabillities p(bt =1)=ab and p(b,=0)=1-gq,

® Posterior: examine one boundary variable (b:) at a time
- Fix the current values of other boundary variables

- Consider both O and | for brand the respective segmentation outcomes

Generate a sample for bt —




Acoustic Landmarks

® Naively, every frame can be a phone boundary
- In fact, some frames are more likely to be boundaries and some are less likely
- Compute landmarks [Glass et al. 2003] and only do inference on landmarks

- A language-independent method
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Acoustic Landmarks

® Naively, every frame can be a phone boundary

- In fact, some frames are more likely to be boundaries and some are less likely
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- Compute landmarks [Glass et al. 2003] and only do inference on landmarks

- A language-independent method

I

"
|
‘ ) %

g
s M

c'.‘ &

\ ) '
'
’ )
) |

® Advantage

- Reduce inference load
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® Data set
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- Multi-speaker; clean read speech, | 6kHz sampling rate

® (Qualitative assessment
- Correlation between induced phone units and English phones

- Compare results of 300 and 3696 utterances

e (Quantitative assessment
- Spoken term detection

- Phone segmentation
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® |23 phone units discovered from 3696 TIMIT utterances

- A finer correlation between discovered phones and English phones
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® Given a spoken query (w), find all spoken documents that contain w
- 3696 utterances for discovering phone units

- Compute posterior-grams on the HMM states of the discovered phone units

X :asingle frame of feature vector

State, ; : the |-th state of the i-th HMM

p(State, ; | x)

K 3
Y Y p(State, ; | x)

i=1 j=1

posterior-gram(x) = | for Isi=sKandl=j=<3

K : the total number of HMMs
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Spoken Term Detection

® Given a spoken query (w), find all spoken documents that contain w
- 3696 utterances for discovering phone units
- Compute posterior-grams on the HMM states of the discovered phone units
- Apply dynamic time warping to keyword detection [Zhang et al, 2009]

- |10 selected keywords
P@N: the average precision of top N hits

P@N EER

English Monophone (Supervised) 74.0 11.8
Thai Monophone Model (Supervised) 56.6 14.9
Our model 63.0 16.9
Zhang 2009 (GMM) (Unsupervised) 52.5 16.4
/Zhang 2012 (DBM) (Unsupervised) 51.1 14.7
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Phone Segmentation

® TIMIT training set

Recall

Precision

F-score

Dusan et al. (20006) /5.2

06.8

70.8

Qiao et al. (2008) /7.5

/6.3

76.9

Our model /6.2

Landmarks 37.0

76.4

50.0

/6.3

64.0
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Conclusions

® An unsupervised framework for discovering acoustic model
- Assume phone frequency adheres to power law

- Use Dirichlet Process to guide inference on the unknown set of phones

® Experimental results
- Discovered units are highly correlated with standard phones
- More accurate spoken term detection performance among top hits (P@N)

- Segmentation results beat the state-of-the art unsupervised method
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Thank you.
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Future Work

® Explore context information

- Revisit the assumption that phones are generated independently

® |earn proper HMM structures from data

- Replace the fixed 3-state and 8 GMM structure

® Apply to more languages
- Looking into the OGI corpus

- Babel data




